首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   2篇
  国内免费   1篇
安全科学   5篇
废物处理   3篇
环保管理   21篇
综合类   5篇
基础理论   10篇
污染及防治   24篇
评价与监测   3篇
社会与环境   2篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2016年   3篇
  2015年   2篇
  2014年   4篇
  2013年   5篇
  2012年   3篇
  2011年   5篇
  2010年   7篇
  2009年   4篇
  2008年   5篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   3篇
  2003年   1篇
  2002年   6篇
  2001年   2篇
  1999年   2篇
  1998年   2篇
  1996年   2篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1982年   2篇
  1981年   1篇
排序方式: 共有73条查询结果,搜索用时 15 毫秒
71.
Continuous monitors were employed for 18 months in an occupied townhouse to measure ultrafine, fine, and coarse particles; air change rates; wind speed and direction; temperature; and relative humidity (RH). A main objective was to document short-term and long-term variation in indoor air concentrations of size-resolved particles (0.01-20 microm) caused by (1) diumal and seasonal variation of outdoor air concentrations and meteorological variables, (2) indoor sources such as cooking and using candles, and (3) activities affecting air change rates such as opening windows and using fans. A second objective was to test and compare available instruments for their suitability in providing real-time estimates of particle levels and ancillary variables. Despite different measuring principles, the instruments employed in this study agreed reasonably well for particles less than 10 microm in diameter. The three instruments measuring fine and coarse particles (aerodynamic diameter between 0.3 and 20 microm) agreed to within 30% in their overall estimates of total volume. Two of these instruments employed optical scattering, and the third used an aerodynamic acceleration principle. However, several lines of evidence indicated that the instrument employing aerodynamic acceleration overestimated concentrations for particle diameters greater than 10 microm. A fourth instrument measuring ultrafine and accumulation-mode particles (0.01-1 microm) was operated with two different inlets providing somewhat different particle size ranges. The two inlets agreed in the ultrafine region (< 0.1 microm) but diverged increasingly for larger particles (up to 0.445 microm). Indoor sources affecting ultrafine particle concentrations were observed 22% of the time, and sources affecting fine and coarse particle concentrations were observed 12 and 15% of the time, respectively. When an indoor source was operating, particle concentrations for different sizes ranged from 2 to 20 times the average concentrations when no indoor source was apparent. Indoor sources, such as cooking with natural gas, and simple physical activities, such as walking, accounted for a majority (50-90%) of the ultrafine and coarse particle concentrations, whereas outdoor sources were more important for accumulation-mode particles between 0.1 and 1 microm in diameter. Averaged for the entire year and including no periods when indoor sources were apparent, the number distribution was bimodal, with a peak at approximately 10 nm (possibly smaller), a shallow minimum at approximately 14 nm, and a second broad peak at approximately 68 nm. The volume distribution was also bimodal, with a broad peak at approximately 200 nm, a minimum at approximately 1.2 microm, and then an upward slope again through the remaining size fractions. A database was created on a 5-min averaging time basis. It contains more than 90,000 measurements by two of the instruments and approximately 30,000 by the two optical scattering instruments. About 4500 hour-long average air change rates were also calculated throughout the year using a dedicated gas chromatograph with electron capture detection (GC/ECD). At high air change rates [> 0.8 air changes per hour (hr(-1))], particle concentrations were either elevated (when no source was present) or depressed (when an indoor source was operating) by factors of up to 2 compared with low air change rates.  相似文献   
72.
In this paper, we evaluate relationships between in-stream habitat, water chemistry, spatial distribution within a predominantly agricultural Midwestern watershed and geomorphic features and fish assemblage attributes and abundances. Our specific objectives were to: (1) identify and quantify key environmental variables at reach and system wide (watershed) scales; and (2) evaluate the relative influence of those environmental factors in structuring and explaining fish assemblage attributes at reach scales to help prioritize stream monitoring efforts and better incorporate all factors that influence aquatic biology in watershed management programs. The original combined data set consisted of 31 variables measured at 32 sites, which was reduced to 9 variables through correlation and linear regression analysis: stream order, percent wooded riparian zone, drainage area, in-stream cover quality, substrate quality, gradient, cross-sectional area, width of the flood prone area, and average substrate size. Canonical correspondence analysis (CCA) and variance partitioning were used to relate environmental variables to fish species abundance and assemblage attributes. Fish assemblages and abundances were explained best by stream size, gradient, substrate size and quality, and percent wooded riparian zone. Further data are needed to investigate why water chemistry variables had insignificant relationships with IBI scores. Results suggest that more quantifiable variables and consideration of spatial location of a stream reach within a watershed system should be standard data incorporated into stream monitoring programs to identify impairments that, while biologically limiting, are not fully captured or elucidated using current bioassessment methods.  相似文献   
73.
The 2010 Deepwater Horizon (DWH) oil spill exposed common bottlenose dolphins (Tursiops truncatus) in Barataria Bay, Louisiana to heavy oiling that caused increased mortality and chronic disease and impaired reproduction in surviving dolphins. We conducted photographic surveys and veterinary assessments in the decade following the spill. We assigned a prognostic score (good, fair, guarded, poor, or grave) for each dolphin to provide a single integrated indicator of overall health, and we examined temporal trends in prognostic scores. We used expert elicitation to quantify the implications of trends for the proportion of the dolphins that would recover within their lifetime. We integrated expert elicitation, along with other new information, in a population dynamics model to predict the effects of observed health trends on demography. We compared the resulting population trajectory with that predicted under baseline (no spill) conditions. Disease conditions persisted and have recently worsened in dolphins that were presumably exposed to DWH oil: 78% of those assessed in 2018 had a guarded, poor, or grave prognosis. Dolphins born after the spill were in better health. We estimated that the population declined by 45% (95% CI 14–74) relative to baseline and will take 35 years (95% CI 18–67) to recover to 95% of baseline numbers. The sum of annual differences between baseline and injured population sizes (i.e., the lost cetacean years) was 30,993 (95% CI 6607–94,148). The population is currently at a minimum point in its recovery trajectory and is vulnerable to emerging threats, including planned ecosystem restoration efforts that are likely to be detrimental to the dolphins’ survival. Our modeling framework demonstrates an approach for integrating different sources and types of data, highlights the utility of expert elicitation for indeterminable input parameters, and emphasizes the importance of considering and monitoring long-term health of long-lived species subject to environmental disasters. Article impact statement: Oil spills can have long-term consequences for the health of long-lived species; thus, effective restoration and monitoring are needed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号